Sabancı University

Faculty of Engineering and Natural Sciences

Fall Semester 2022-2023

PHYS 211

MODERN PHYSICS

Instructor: Durmuş Ali Demir (Room: 1089, Ext. 7042, durmus.demir@sabanciuniv.edu)

Teaching Assistant: Ara Rahimpour (ara.rahimpour@sabanciuniv.edu)

Text : Arthur Beiser, "Concepts of Modern Physics"

Summary: An introduction to relativity and quantum physics based mainly on experiments.

Grading

Grades will be based on homeworks, 2 take-home midterm examinations, and 1 in-class final examination.

Midterm take-home exams ... 20 + 25 %

Final exam 40 %

Homeworks 15%

Class hours Monday 13:40-14:30 (FENS L062) Tuesday 15:40-17:30 (FENS L030) Office hours:

Tuesday 14:40-15:30

PHYS 211 Course outline:

- 1. Understanding the Atom
 - a) Brownian Motion
 - b) Discovery of the Electron
 - c) Discovery of the Nucleus
 - d) Structure of the Atom
- 2. Understanding the Electron
 - a) Interference of Waves (Water and Light)
 - b) Interference of Corpuscles (Marbles)
 - c) Davisson-Germer Experiment
 - d) Interference of Electrons (Wave? Corpuscle?)
- 3. Understanding the Stability of the Atom
 - a) Propagating Waves
 - b) Standing Waves
- 4. Wave-Particle Duality
- 5. Quantization
 - a) Bounded and Unbounded Motions
 - b) Quantization Condition
 - c) Angular Momentum
 - d) Universal Angular Momentum Unit
 - e) Measuring the Universal Angular Momentum Unit
- 6. Uncertainty Principle
- 7. Basic Math
 - a) Complex Numbers
 - b) Complex Functions
- 8. Probability as a Physical Variable
 - a) Wavefunction
 - b) Interference
 - c) Classical vs Quantum Probabilities
- 9. Basic Math

- a) Matrices
- b) Operators
- c) Derivative Operator
- 10. Operators for Physical Quantities
 - a) Position Operator
 - b) Momentum Operator
 - c) Fundamental Commutator
- 11. Dynamics of Wavefunction
 - a) Energy Operator
 - b) Schroedinger Equation
 - c) Probability Waves
- 12. Particle in a Potential Well
 - a) Wavefunction
 - b) Energy spectrum
- 13. Particle in a Potential Wall
 - a) Wavefunction
 - b) Transmission/Reflection
- 14. Intrinsic Angular Momentum (Spin)
 - a) $E = m c^2$
 - b) p = m c
 - c) $S = \hbar$